How Many Orai's Does It Take to Make a CRAC Channel?

نویسندگان

  • Jill L. Thompson
  • Trevor J. Shuttleworth
چکیده

CRAC (Calcium Release-Activated Calcium) channels represent the primary pathway for so-called "store-operated calcium entry" - the cellular entry of calcium induced by depletion of intracellular calcium stores. These channels play a key role in diverse cellular activities, most noticeably in the differentiation and activation of Tcells, and in the response of mast cells to inflammatory signals. CRAC channels are formed by members of the recently discovered Orai protein family, with previous studies indicating that the functional channel is formed by a tetramer of Orai subunits. However, a recent report has shown that crystals obtained from the purified Drosophila Orai protein display a hexameric channel structure. Here, by comparing the biophysical properties of concatenated hexameric and tetrameric human Orai1 channels expressed in HEK293 cells, we show that the tetrameric channel displays the highly calcium-selective conductance properties consistent with endogenous CRAC channels, whilst the hexameric construct forms an essentially non-selective cation channel.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional stoichiometry of the unitary calcium-release-activated calcium channel.

Two proteins, STIM1 in the endoplasmic reticulum and Orai1 in the plasma membrane, are required for the activation of Ca(2+) release-activated Ca(2+) (CRAC) channels at the cell surface. How these proteins interact to assemble functional CRAC channels has remained uncertain. Here, we determine how many Orai1 and STIM1 molecules are required to form a functional CRAC channel. We engineered sever...

متن کامل

Divergence of Ca selectivity and equilibrium Ca blockade in a Ca release-activated Ca channel

Ca is a multifunctional signaling messenger crucial for diverse biological processes. Among the various ways by which cellular Ca signals are generated, storeoperated Ca release-activated Ca (CRAC) channels are recognized as a widespread mechanism for regulating transcription, motility, and proliferation in many cells (Feske, 2009; Hogan et al., 2010; Lewis, 2011). CRAC channels produce sustain...

متن کامل

Discrimination of intracellular calcium store subcompartments using TRPV1 (transient receptor potential channel, vanilloid subfamily member 1) release channel activity.

The store-operated calcium-release-activated calcium current, I (CRAC), is a major mechanism for calcium entry into non-excitable cells. I (CRAC) refills calcium stores and permits sustained calcium signalling. The relationship between inositol 1,4,5-trisphosphate receptor (InsP(3)R)-containing stores and I (CRAC) is not understood. A model of global InsP(3)R store depletion coupling with I (CR...

متن کامل

STIM1 activates CRAC channels through rotation of the pore helix to open a hydrophobic gate

Store-operated Ca2+ release-activated Ca2+ (CRAC) channels constitute a major pathway for Ca2+ influx and mediate many essential signalling functions in animal cells, yet how they open remains elusive. Here, we investigate the gating mechanism of the human CRAC channel Orai1 by its activator, stromal interacting molecule 1 (STIM1). We find that two rings of pore-lining residues, V102 and F99, w...

متن کامل

Activation of store-operated I(CRAC) by hydrogen peroxide.

Reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) play a role in both innate immunity as well as cellular injury. H2O2 induces changes in intracellular calcium ([Ca(2+)]i) in many cell types and this seems to be at least partially mediated by transient receptor potential melastatin 2 (TRPM2) in cells that express this channel. Here we show that low concentrations of H2O2 induce the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2013